
DIFFERENTIAL EQUATIONS LECTURE NOTES

These notes are intended to supplement sections 6.1 and 4.1 from Nagle, Saff, and Snider. They
provide some background and stronger connections to linear algebra which are missing from the
text.

INTRODUCTION

An nth-order differential equation is an equation in the variables x, y, y′, y′′, . . . , y(n).

A solution to a differential equation is a function f(x) which satisfies the equation when f is
plugged in for y and the derivatives of f for y′, y′′, etc.

Examples: y′ = cos(x) y′′ = y xy′ = y
Solutions: y = sin(x) + c et, e−t, others? cx, others?

Differential equations usually have multiple solutions. Initial value information can help us
narrow it down.

Example: y′ = cos(x), y(0) = 3.
To solve this initial value problem, we note that y =

∫
cos(x)dx = sin(x)+c describes all solutions

to the differential equation. Then y(0) = sin(0) + c = c, so c = 3. Hence there is a unique solution:
y = sin(x) + 3.

General Principle of Differential Equations: (Existence and Uniqueness of Solutions)
Given a differential equation and “enough” initial value information, there should exist a unique

solution to the initial value problem.

LINEAR DIFFERTIAL EQUATIONS

A nth-order linear differential equation sets a linear combination of y, y′, . . . , y(n) with
coefficients functions of x, equal to a function of x:

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′ + a0(x)y = b(x).

Dividing by an (this will restrict us to a domain on which an(x) 6= 0), we get the standard form:

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = g(x).

The equation is homogeneous if g(x) = 0.

Theorem (Existence and Uniqueness for Linear Differential Equations)
If p1(x), . . . , pn(x) and g(x) are continuous on the interval (a, b), and x0 is in (a, b), then for any

real numbers γ0, γ1, . . . , γn−1, the initial value problem

y(n) + p1(x)y(n−1) + · · ·+ pn(x)y = g(x)

y(x0) = γ0

y′(x0) = γ1
...

y(n−1)(x0) = γn−1

has a unique solution defined on (a, b).
1
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This theorem is proven in more advance courses on differential equations.

Example: y′′ = x−3, y(1) = 1, y′(1) = −1
2 .

Note that this is a second order equation, so we need to know two piece of initial value informa-
tion, y(x0) and y′(x0).

If y′′ = x−3, then integrating, y′ =
∫
x−3dx = −1

2x
−2 + c1, and integrating again, y = 1

2x
−1 +

c1x+ c2. This describes all solutions to the differential equation.
Using the initial value information, y′(1) = −1

2 · 1 + c1 = −1
2 + c1, so c1 = 0.

And y(1) = 1
2 · 1 + 0 · 1 + c2 = 1

2 + c2, so c2 = 1
2 .

We have found a solution: y = 1
2x
−1 + 1

2 .
But what interval is it defined on? In order to use the theorem to conclude that our solution is

unique, we must specify an interval (a, b). It must contain 1 (our x0), and it must not contain 0
(since our g(x) = x−3 is not continuous there).

We may as well take the largest interval satisfying these conditions: (0,∞). By the theorem,
y = 1

2x
−1 + 1

2 is the unique solution to the initial value problem on (0,∞).

As an example of why we need to be careful about the domain interval, consider the function

f(x) =

{
1
2x
−1 + 1

2 x > 0
1
2x
−1 − 1 x < 0

which is defined on R \ {0}. At every point other than 0, f satisfies f ′′(x) = x−3, and we have
f(1) = 1 and f ′(1) = −1

2 . That is, f is a solution to the initial value problem. The moral is that
uniqueness of the solution may fail if we consider functions defined on larger domains.

Example: xy′′ +
√
x+ 1y′ + 1

x−1y = 0, y(x0) = 0, y′(x0) = 0.
Standard form:

y′′ +

√
x+ 1

x
y′ +

1

x(x− 1)
y = 0.

All coefficient functions are defined and continuous on (−1, 0), (0, 1), and (1,∞). So the theorem
guarantees a unique solution defined on

(−1, 0) if − 1 < x0 < 0

(0, 1) if 0 < x0 < 1

(1,∞) if 1 < x0

.

Note that if we were given initial value information at three points, one in each interval, then we
would get a unique solution on each interval, which we could piece together into a unique solution
on the union of the domains.

LINEAR ALGEBRA PERSPECTIVE

We are working in a large vector space of functions. This could be

• C∞, infinitely differentiable functions R→ R, or
• C∞(a, b), infinitely differentiable functions (a, b)→ R, or maybe
• Cn(a, b), n times differentiable functions (a, b) → R, if we are working with at most nth-

order differential equations.

For convenience, I will usually use C∞(a, b) to denote our function space.
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Given an nth-order linear homogeneous differential equation y(n)+p1(x)y(n−1)+ · · ·+pn(x)y = 0,
we may pick an interval (a, b), on which p1, . . . , pn are defined and continuous. The differential
equation then defines a linear transformation L : C∞(a, b)→ C∞(a, b), given by

L(f) = f (n) + p1f
(n−1) + . . . pnf.

The solutions to the differential equations are the functions f in C∞(a, b) such that L(f) = 0,
that is, the kernel of L. Recall that the kernel of a linear transformation is always a subspace
of the domain, so ker(L) is a subspace of C∞(a, b). We are interested in describing this subspace,
which I will call S = ker(L).

For any point x0 in (a, b) and f in S, let

Evalx0(f) =


f(x0)
f ′(x0)

...

f (n−1)(x0)

 .

This is a vector of n real numbers. Evalx0 is a linear transformation S → Rn.

Now a set of initial values y(x0) = γ0, . . . , y(n−1)(x0) = γn−1 is just a target vector in Rn:

γ =


γ0
γ1
...

γn−1

 .

That is, we require Evalx0(y) = γ. The existence and uniqueness theorem says that for any target
vector γ in Rn, there exists a unique f in S such that Evalx0(f) = γ. The existence says that
Evalx0 is onto. The uniqueness says that Evalx0 is one-to-one.

So Evalx0 is an isomorphism S ∼= Rn. This tells us several things:

• dim(S) = n.
• If we can find n linearly independent solution functions f1, . . . , fn in S, they will be a

basis for S. That is, all solutions to the differential equation can be uniquely expressed as
c1f1 + . . . cnfn for some real numbers c1, . . . , cn.
• Given initial value information at x0, y(x0) = γ0, . . . , y(n−1)(x0) = γn−1, the unique

solution to the initial value problem will be c1f1 + · · · + cnfn, where the c’s are chosen so
that c1Evalx0(f1) + . . . cnEvalx1(fn) = γ.
• Given functions f1, . . . , fn in S (that is, solutions to the same differential equation), we can

test their linear independence by testing the linear independence of Evalx0(f1), . . . ,Evalx0(fn).
One way to do this is by taking the determinant

W [f1, . . . , fn](x0) =

∣∣∣∣∣∣∣∣∣
f1(x0) f2(x0) · · · fn(x0)
f ′1(x0) f ′2(x0) · · · f ′n(x0)

...
...

. . .
...

f
(n−1)
1 (x0) f

(n−1)
2 (x0) · · · f

(n−1)
n (x0)

∣∣∣∣∣∣∣∣∣ .
This determinant is called the Wronskian of f1, . . . , fn, evaluated at x0.


